

TAMIL UNIVERSITY Thanjavur, Tamil Nadu – 613 010 (Reaccredited with 'B⁺' grade by NAAC)

DEPARTMENT OF ENVIRONMENT AND HERBAL SCIENCE

M.Sc. - ENVIRONMENTAL SCIENCE (Choice Based Credit System)

Duration of the Course: 2 Years

OBE Model Syllabus

(Effective from the academic year 2020-21 and thereafter)

M. Sc. ENVIRONMENTAL SCIENCE

OBE REGULATIONS AND SYLLABUS

(With effect from the academic year 2020-2021 onwards)

1. Preamble

Growing populations and high standards of living put increasing pressure on our environment. Since the beginning of industrialization and urbanization, we have been facing with an increasing number of environmental challenges such as air, water and soil contamination, energy crisis, land degradation, deforestation, loss of biodiversity, global warming and climate change, etc., Considering the above issues, addressing environmental problems from a scientific perspective is utmost important for today's world. So, there is a need to develop the next generation as skilled professionals in a multidisciplinary Environmental Science programme to solve the environmental issues.

2. General Graduate Attributes

2.1. Environmental Knowledge

Apply the basic knowledge of environmental components and its interactions and to conceptualize the domains towards environmental protection and to visualize the environmental management perspectives.

2.2. Critical Thinking Skills

To analyze and evaluate critically, the issues related to the environment, and biosphere and pollution related issues and delineating the possible factors for environmental sustainability.

2.3. Research Skills

Improve the research-oriented skills by involving into the specific need-based research works and thereby enhancing the research-oriented work environment.

2.4. Problem Solving Skills

Identify, analyze and assess the complex environmental issues and to apply the knowledge to solve the issues.

2.5. Environment Management

To improve oneself to undertake and manage environment related works and to develop a leadership quality and capacity to manage a team for carrying out assigned or specific tasks.

2.6. Technical Skills

To acquire and equip oneself with technical knowledge on critical environmental problems and to devise technical strategies for the betterment of the environment.

2.7. Use of Modern Tools

To acquire the knowledge and working experience on modern tools in terms of instrumentation, softwares and research methods which can be used to assess the environmental quality.

2.8. Project Management

To manage and coordinate specific environmental work, tasks or projects and to apply specific principles and methodologies to carry out environmental project works.

2.9. Societal and Environmental Concern

To have appealing concern over the environment and its well-being, and to apply the acquired knowledge and skills for the societal upliftment and for sustainable environment.

2.10. Individual and Team Work

To develop the skill of working individually and to be a part of a team as an effective team member or a leader of the team in order to manage projects related to environment.

2.11. Innovation and Entrepreneurship

To develop skills of innovation and entrepreneurship in the field of environmental technology to initiate small scale start-ups and upscale the process towards entrepreneurship.

3. Programme Specific Qualification Attributes

3.1 Knowledge and understanding level (L1 and L2)

Students can understand the fundamentals of ecology, environment, biodiversity and natural resources their process for sustainable development. The students can understand the basics of pollutant and their toxic effects.

3.2 Application level (L3)

Students will be capable of applying microbes for potential environmental cleanup and green energy production, and to generate value-added products through waste recycling.

3.3 Analytical level (L4)

Students can analyze the environmental parameters of each and every aspects of and biochemical reaction in animals including human being.

3.4 Evaluation capability level (L5)

Students can acquire the capability of evaluating the responsible factors for any kind of environmental related issues and can be able to apply the acquired knowledge in providing solutions to the environmental problems.

3.5 Scientific or synthesis level (L6)

Students will be able to synthesize or develop new processes or products or to formulate new scientific tools related to environment.

4. Vision

• Creating and Maintaining Excellence in Environmental Science and contributing our knowledge and effort in bringing up rich posterity.

5. Programme Objectives and Outcomes5.1 Programme Educational Objectives (PEOs)

Post graduate of M.Sc. Environmental Science program will be

PEO1	Utilizing domain knowledge to understand the environment and to provide
	solutions for the development of society.
PEO2	Applying research and acquired skills with a rich set of communication and
	leadership skills to sustain in the environment.
PEO3	Expressing constant development in their specialized career through life-
	long learning, appreciating human values and ethics.

5.2 Programme Outcomes (PO)

After successful completion of the two years M.Sc. Environmental Science Programme, the students are expected to have

PO1	Deep knowledge in natural resources, ecosystem and their biogeochemical
	processes, biodiversity, GIS and their importance, various elements of climate
	change and environmental clearance procedures.
PO2	Good understating in properties of environmental pollutants and their impact
	on environment, occupational diseases, nanomaterials and their toxicity.
PO3	Capability in applying microbes for potential environmental cleanup and
	energy production, and to generate value added products through waste
	recycling and other sustainable environmental management practices.
PO4	Acquire more knowledge and skills in methods used for EIA studies, auditing,
	remote sensing and Geographic Information Systems to monitor the pollution,
	environmental issues and critically analyzing the global climate change issues.
PO5	Expertise to become as environmental consultants / managers at local,
	regional and national levels industries / institutions /organizations.
PO6	Capability to become an entrepreneur in the field of EIA, waste management
	and waste recycling, natural product, environmental safety trainer.
PO7	Qualification to be employed as a researcher / scientist / faculty in colleges /
	universities / Research organizations.

6. Candidate's eligibility for admission

Candidate who has passed the B.Sc. degree in any Life Sciences including Environmental Science/ Environmental Management/ Microbiology/ Applied Microbiology/ Industrial Microbiology/ Botany/ Plant Sciences and Plant Biotechnology/ Zoology/ Animal Science/ Applied Animal Science and Animal Biotechnology/ Biochemistry/ Bioinformatics/ Biology/ Life Sciences/ Home Science/ Food Science & Nutrition/ BSMS/BAMS/BUMS/ Chemistry with Botany/ Zoology as Allied Subjects of any University accepted by the Syndicate as equivalent there to shall be eligible for admission to M.Sc. Degree Course in Environmental Sciences.

7. Duration and pattern

Two Years and Semester Pattern

Semester I	July – November
Semester II	January – May
Semester III	July – November
Semester IV	January – May

8. CBCS- Structure of the Programme

The programme structure comprises of two parts.

Course	No. of Courses	Hours of	Marks	Credits				
Component		Learning						
Part A (Credit Courses)								
Core Courses	11		1100	50				
Elective	3		300	12				
Courses								
Supportive	3		300	9				
Courses								
Lab Course	3		300	15				
Research	1		150	6				
Project								
Field visit	1	-	50	2				
Total	22		2200	94				
Part B (Self-Learning Credit Courses)								
Industry	1	18 hrs	100	2				
oriented course								
Total	23		2300	96				

9. Examinations

Examinations are conducted in semester pattern. The examination for the Semester I & III will be held in November/ December and that for the Semester II and IV will be in the month of April/ May. Candidates failing in any subject (both theory, practical skill) will be permitted to appear for such failed subjects in the same syllabus structure at subsequent examinations within next 5 years. Failing which, the candidate has to complete the course in the present existing syllabus structure.

10. Scheme for Evaluation and Attainment Rubrics

Evaluation will be done on a continuous basis and will be evaluated three times during the course work. The first evaluation will be in the 8th week, the second in the 16th week and the end – semester examination in the 19th week. Evaluation may be by objective type questions, short answers, essays or a combination of these, but the end semester examination is a University theory examination with prescribed question paper pattern.

10.1 Attainment Rubrics for Theory Courses

Internal (Max. Marks - 25)

Attendance	Seminar	Assignment	Cycle Test	Total
5	5	5	10	25

External (Max. Marks - 75)

Ouestion Paper	Approaches	Mark Pattern	L Level
Pattern (Theory)			
Section			
А	One/ two lines or one	20 x 1 = 20	L1, L2
	line	(Multiple Choice	
	(Answer all questions)	Questions)	
В	150 to 200 words	5 x 5 = 25	L3, L4
	(Answer all questions	(Essay type questions)	
	- either or)		
С	400 to 500	$3 \ge 10 = 30$	L5, L6
	(Answer any three out	(Essay type questions)	
	of five questions)		

Attainment Rubrics for Lab Courses

Internal (Max. Marks - 40)

Attendance	Practical Test	Observation Note	Periodical	Total Marks
			Performance	
5	20	5	10	40

External (Max. Marks - 60)

Major	Minor	Spotters	Record	Viva-Voce	Total
Experiment	Experiment				Marks
20	15	15	5	5	60

Attainment Rubrics for Research

Internal (Max. Marks - 50)	50 Marks
Periodical Review and Results	
Presentation	
External (Max. Marks - 100) Vivo-	25 Marks
Voce Presentation	
Dissertation	75 Marks

Passing Minimum

- For **internal assessment**, passing minimum shall be of **50%** (Fifty Percentage) of the maximum marks prescribed for the respective paper.
- For external examination, passing minimum shall be of **50%** of the maximum marks prescribed for the paper.
- In the aggregate (External + Internal) **the passing minimum shall be of 50%** (50 out of 100 marks) for each paper/ practical/ project and viva-voce.
- Grading shall be based on overall marks obtained (internal + external).

11. Grading System

Evaluation of performance of students is based on ten-point scale grading system as given below.

Ten Point Scale						
Grade of	Grade	Letter	Description			
Marks	points	Grade				
90-100	9.0-10.0	0	Outstanding			
80-89	8.0-8.9	D+	Excellent			
75-79	7.5-7.9	D	Distinction			
70-74	7.0-7.4	A+	Very Good			
60-69	6.0-6.9	А	Good			
50-59	5.0-5.9	В	Average			
00-49	0.0	U	Re-appear			
ABSENT	0.0	AAA	ABSENT			

Table of Courses

பருவம் Semester		பாடத்தலைப்பு Course Title	கற்பித்தல் அளவன் Credits	கற்பித்தல் நேரம் Teaching Hours	மதிப்பெண் Marks		
	பா.கு.எண் Course Code				அக மதிப்பெண் Internal Mark	புற மதிப்பெ ண் External Mark	மொத்த மதிப்பெண் Total Marks
	MES4111	Core – 1 Fundamentals of Environmental Sciences அடிப்படைச்சூற்றுச்சூழல் அறிவியல்	5	5	25	75	100
பருவம் 1 Semester 1	MES4112	Core – 2 Environmental Microbiology Biotechnology and Toxicology சுற்றுச்சூழல் நுண்ணுயிரியல் உயிர் தொழிற்நுட்பவியல் மற்றும் நச்சியியல்	5	5	25	75	100
	MES4113	Core – 3 PRACTICAL – 1 செய்முறை பயிற்சி – I	5	5	40	60	100
	MES4114	Core – 4 Environmental Chemistry சுற்றுச்சூழல்வேதியியல்	4	4	25	75	100
	EES4131	Elective –1 Bio-Statistics and Computer Application உயிர் புள்ளியியல்மற்றும் கணினி பயன்பாடு	4	3	25	75	100
	SES4121	Supportive – 1	3	3	25	75	100
		Sub-Total	26	25			600
பருவம் 2 Semester 2	MES4211	Core – 5 Energy Resources and its Sustainability ஆற்றல் வளங்கள் மற்றும் நிலைத்தன்மை	5	5	25	75	100
	MES4212	Core – 6 Environmental Pollution சுற்றுச்சூமல்மாசுபாடு	5	5	25	75	100
	MES4213	Core – 7 PRACTICAL - 2 செய்முறை பயிற்சி -II	5	5	40	60	100
	MES4214	Core – 8 Environmental Impact Assessment சுற்றுச்சூமல்காக்க மகிப்பீடு	4	4	25	75	100
	EES4231	Elective – 2	4	3	25	75	100

		Remote Sensing and Geographical Information System					
		தொலை உணர்வு மற்றும்					
		புவி தகவலமைப்பு					
	SES4221	Supportive - 2	3	3	25	75	100
		Sub-Total	26	25			600
	MES4311	Core –9 Environmental Engineering சுற்றுச்சூழல்பொறியியல்	5	5	25	75	100
பருவம் 3	MES4312	Core – 10 Research Design and Instrumental Methods ஆய்வு வடிவம் மற்றும் ஆய்வு உபகரணங்களின் பயன்பாடு	5	5	25	75	100
Semester 3	MES4313	Core –11 PRACTICAL - 3 செய்முறை பயிற்சி –III	5	5	40	60	100
	MES4314	Core –12 Waste Management கழிவு மேலாண்மை	4	4	25	75	100
	EES4331	Elective –3 Disaster Management பேரிடர் மேலாண்மை	4	3	25	75	100
	SES4321	Supportive - 3	3	3	25	75	100
		Sub-Total	26	25			600
பருவம் 4 Semester 4	MES4411	Core - 13 Environmental laws and policies சுற்றுச்சூழல் சட்டங்கள் மற்றும் கொள்கைகள்	4	4	25	75	100
	MES4412	Core – 14 Environmental Management and Sustainable Development சுற்றுச்சூழல் மேலாண்டை நிலைத்த நீடித்த வளர்ச்சி	4	4	25	75	100
	MES4441	Internship Work களப்பணி	2	-	-	50	50
	MES4451	Project work ஆய்வுத் திட்டப்பணி	6	15	50	100	150
		Sub-Total	16	23	50	100	400
	MES4442	Industry Oriented course	2	-	-	100	100
		TOTAL	96	98			2300

SEMESTER – I

Core - 1: Ecology and Biodiversity Conservation

1.1 Course Objectives

The purpose of this course is to gain an understanding of the value of Scope and Importance of Environmental Science. Biodiversity and drivers of its loss; current efforts to conserve biodiversity on global, national and local scales; practical issues with local conservation and organizations, policies and programmes for sustainable management of bioresources.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Course Outcomes	Unit
CO1	Understand the definition, concepts of Environmental Science and	T
	Components of the environment	1
CO2	Know about ecology and ecosystem of the environment and	П
	Biodiversity and its types	11
CO3	Understand the biodiversity conservation and its types	III
CO4	Applications of Conservation Genomics and technology	III
CO5	Study about structure and management of bioresources	IV
CO6	Know more knowledge about sampling and assessment of flora and	V
	fauna	

1.3 Mapping Scheme

The mapping of course outcomes with programme outcomes is tabulated as follows

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	L	L	L	Н	М	Н
CO2	Н	L	-	-	Н	L	Н
CO3	Н	L	L	L	Н	М	Н
CO4	М	-	-	-	М	-	L
CO5	Н	-	-	-	М	L	М
CO6	М	-	-	-	L	L	Н

1.4 Syllabus (Ecology and Biodiversity Conservation)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
	Components	Environmental Science - Definition, Scope and Importance.	
Ι	of the	Components: Atmosphere, Hydrosphere, Lithosphere and	8
	environment	Biosphere – Structure and composition.	
		Ecology: Types of ecosystem - Terrestrial and Aquatic	
II	Ecosystem	ecosystems - Ecological pyramids - Food Chain - Food Web	
	and	- Energy flow – Biodiversity - Types of Biodiversity:	
	Biodiversity	Species, Genetic and Ecosystem diversity – Alpha, beta, and	
		gamma diversity	8
		In-situ conservation: Afforestation, Social Forestry, Agro-	
		forestry, Zoos, Biosphere Reserves, National Parks,	
		Sanctuaries, Protected Area Network, Sacred Groves and	
		Sthalavrikshas – Ex-situ conservation: Botanical gardens,	
III	Conservation	Cryopreservation, Gene Bank, Seed Bank, Pollen Bank,	12
	Strategies of	Sperm Bank, cDNA Bank - Conservation Genomics:	
	Biodiversity	Environmental DNA (eDNA) for wildlife biology and	
		biodiversity monitoring, Next Generation Sequencing (NGS)	
		Techniques, DNA barcodes, Transcriptome and Epigenome	
		tools, CRISPR based gene drives	
		Physical Structure: - structure, stratification; Biological	
IV	Sustainable	structure: Species richness, Species diversity, Abundance,	
	Management	Dominance, Frequency, Importance value, Keystone species;	
	of	Community characteristics: guild, ecotone, edge effect,	
	Bioresources	ecological niche, ecological equivalents, and ecological	12
		succession.	
V	Plant & animal	Qualitative assessment – Floristic composition, stratification;	
	populations	Quantitative assessment Frequency, density, abundance, cover	
		and basal area; Sampling phytoplankton and periphyton;	
		Sampling animal populations.	

1.5 REFERENCE

1.5aText books

- 1. Agarwal KC (2002). Global Biodiversity. Nidhi Publishers, Bikaner. 686 pages.
- 2. Clarke GL (2003) Elements of Ecology. John Wiley, London.560 pages.
- 3. Odum Eugene P (1971).Fundamentals of Ecology. W.B. Saunders Co.Philadelphia and London. 574 pages.
- 4. Sharma PD (2003). Ecology and Environment. Rastogi Publication, Meerut.
- 5. Mishra PC and Trivedy RK (1994). Ecology and Pollution of Indian Lakes and rivers. Enviromedia, Karad.

1.5b Reference books

- 1. Singh JS, Singh SP and Gupta SR, Ecology, Environment and Resource Conservation (2006). Anamaya Publisher, New Delhi.
- 2. Verma PS and Agarwal VK, Environmental Biology: Principles of Ecology (2015). S Chand & Company Pvt Ltd.
- 3. Chapman JL and Reiss MJ, Ecology-Principles and applications (1995). Cambridge University Press.

1.5c Web sources

- 1. <u>https://libguides.brighton.ac.uk/ecology/webresearch</u>
- 2.<u>https://projects.ncsu.edu/cals/course/fw353/Estimate.htm#:~:text=In%20practice%2C%20population%20estimates%20are,%2C%20and%20mark%2Drecapture%20methods</u>
- 3. <u>https://www.questia.com/library/science-andtechnology/environmental-and-earth-sciences/ecology</u>

Core- 2: ENVIRONMENTAL MICROBIOLOGY, BIOTECHNOLOGY AND TOXICOLOGY

1.1 Course Objectives

- To learn the basic knowledge about Microbiology
- To know the role of microbes and microbial interactions in soil and air
- To understand the bioremediation and application to Environmental pollution
- To learn the basic knowledge about toxicology
- Apply the Biotechnology tools for clean environment to clean the environment

1.2 Course Outcomes

On the successful completion of the course, students will be able to

СО	Course Outcomes	Unit
CO1	Able to understand about microbes and culture preparation	Ι
CO2	Understand the role of microbes in pollution and treatment of wastes	II
CO3	Apply the Biotechnology tools for clean environment and hazardous wastes using bioremediation	III
CO4	Know about origin, classification of Toxicology, Toxicants in the environment, levels of toxicity	IV
CO5	Study on major toxicants, Bioaccumulation, biomagnification and Biotransformation	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	L	М	L	L	Н	L	М
CO2	Н	М	-	-	М	-	L
CO3	L	L	М	М	Н	М	Н
CO4	М	Н	L	-	-	-	L
CO5	L	-	L	L	Н	L	Н

1.4 Syllabus (Environmental Microbiology, Biotechnology and Toxicology)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
		Ultra structure of Prokaryotic and Eukaryotic cell -	
	Introduction to	Sterilization techniques used in microbiology -	
Ι	Microbiology	Preparation of media for isolation and culture of	7
		microorganisms - Microbial growth and multiplication of	
		bacteria, virus and fungi - Nature of virulence, toxins,	
		extra cellular enzymes of pathogenic bacteria.	
		Microbial air pollutants - Bioaerosols, Aero allergen,	
		Water pollution: Sources and nature of pollutants in	
II	Applied	water. Assessment of microbiological quality of water -	
	Microbiology	MPN technique. Domestic solid (compost) and liquid	7
		waste treatment – Eutrophication. Microbial conversion	
		of solid waste to food (Mushroom, SCP), fuels (Biogas,	
		Ethanol).	
		Bioremediation- Biotechnology for clean environment-	
	Environmental	Bioindicators and biosensors for detection of pollution-	
III	remediation	Biotechnology for hazardous waste management,	10
	Bioremediation	Persistent organic pollutants, Xenobiotics, Biological	
		Detoxification of PAH, Biotechniques for Air pollution	
		control- Indian GMOs.	
		Toxicology - Definitions, Classification, Origin and	
		General Nature of Toxicants in Environment, Basic	
	Toxicology	Probit analysis, concepts – Toxicants – Toxicity - Acute,	
IV		sub acute, chronic, dose effect, LD50, LC50 and	10
		response safe limits, Dose response relationship - graphs,	
		concentration response relationship, Safe Limits.	
		Bioaccumulation and Biomagnifications of toxic	
	Mechanism and	materials in food chain, Types, mechanism and	
V	Toxicology	Toxicology of major pollutants, Biotransformation,	10
		biomonitoring, concept of bioindicator groups and	
		examples.	

1.5 References

1.5a Text Books

- 1. Dubey and Maheshwari, (1999), A text book of Microbiology, 1/e, Chand publications, New Delhi.
- 2. Mohapatra P K (2008). Text Book of Environmental Microbiology, I K International Publishing House Limited.
- 3. Michael J. Pelczar, Microbiology (2010). Tata McGraw-Hill.
- 4. Casida LE, Industrial Microbiology (2015). New Age International, PJ Limited, Publisher.
- 5. Singh DP and Dwivedi SK, Environmental Microbiology and Biotechnology 1st Ed. (2004). New Age International (P) Ltd., Publishers, New Delhi.
- 6. Klassen CD and Watkins JBIII, Casarett and Doull's, The Basic Science of Poisons Companion Handbook, Toxicology 6th Ed (2001). McGraw-Hill, New York.

1.5b Reference Books

- 1. Brock TD, Madigan MT, Martinko JM and Parker J (1994) Biology of Microorganisms, VII Ed., Prentice-Hall, New Jersy, USA.
- 2. Ronald M. Atlas and Richard Bartha, (1997). Microbial Ecology, 4/e, Benjamin Cummings Publishing company, USA.
- 3. Crawford RL and Crawford DL, Bioremediation–Principles and applications (1996) Cambridge University Press.
- 4. Tortora GJ, Funke BR, Case CL, Microbiology (2014). Pearson Publishers.
- 5. Glazer AN and Nikaido H, Microbial Biotechnology (1995), WH Freeman and Company, New York, USA.
- 6. Glick BR and Pastemak JJ, Molecular Biotechnology: Principles and Applications of Recombinant DNA (1994). ASM Press. Washington, DC USA.
- 7. Rajendran P and Gunasekaran P, Microbial Bioremediation (2006), MJP Publishers, Chennai.

1.5c Web sources

- 1. https://micro.magnet.fsu.edu/cells/bacteriacell.html
- 2. <u>https://www.grains.kstate.edu/spirel/docs/research/heatipm/presentations/Thermal%20d</u> <u>eath%20kinetics.pdf</u>
- 3. https://www.bgr.bund.de/EN/Themen/Min_rohstoffe/Biomining/biomining_node_e n.html
- 4. https://acsess.onlinelibrary.wiley.com/doi/full/10.2134/csa2017.62.1202
- 5. https://www.ncbi.nlm.nih.gov/books/NBK554776/

Core- 4: ENVIRONMENTAL CHEMISTRY

1.1 Objectives

• To impart the basic and fundamental knowledge of chemical principles governing the reactions of the environment (in various spheres).

• To make the students understand the chemical reactions taking place in natural environment and their interrelationships.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Course Outcomes	Unit
CO1	Apply the basic concepts to prepare solutions in different concentration units used in chemical analysis.	Ι
CO2	Categorize the importance of atmospheric gases and Compare thermochemical and photochemical reactions in the atmosphere	II
CO3	Determine the properties and chemical reactions of water and water quality	III
CO4	Estimate properties of soil and evaluate the soil quality.	IV
CO5	Explain various biochemical reactions involved in living organisms.	V

1.3 Mapping Scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	-	L	-	-	М	-	Н
CO2	М	Н	-	М	М	-	М
CO3	L	Н	L	М	L	L	Н
CO4	-	L	-	М	L	L	Н
CO5	L	-	-	-	М	-	М

1.4 Syllabus (Environmental Chemistry)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
		Environmental Chemistry: Definition and explanation	
		of various terms Scope - Molarity, molality, normality	
	Fundamentals	and percent solutions, stock and standard solution	
Ι	of	preparation. Stoichiometry, Gibb's Energy, chemical	
	Environmental	potential, chemical equlibria, acid base reactions,	10
	Chemistry	solubility product, solubility of gases in water, the	
		carbonate system, radionuclide's	
		Atmospheric layers - Classification of elements,	
		chemical speciation, particles, ions and radicals in the	
II	Atmospheric	atmosphere - Chemical processes for formation of	12
	Chemistry	inorganic and organic particulate matter. Thermo	
		chemical and photochemical reactions in the	
		atmosphere - Oxygen and ozone chemistry, Chemistry	
		of air pollutants, Photochemical Smog.	
		Formation of water, unusual physical properties,	
		hydrogen bonding in biological system, unusual solvent	
	Water	properties, changes in water properties by addition of	
III	Chemistry	solute - Chemical reactions in aquatic environment;	12
		Concept of oxygen demand - DO, BOD, COD; TDS,	
		pH, conductivity - Colloids - Salinity - Chemical	
		speciations in aquatic environment - Role of water in	
		the environment – Hydrological cycle.	
		Chemical composition of earth, metals, minerals, fossil	
		fuels and soils Physico-chemical characteristics of soil,	
IV	Soil Chemistry	soil air, soil clays, organic carbon, soil humus and	12
		mineralization, cation exchange capacity, soil water	
		solution, Nitrogen pathways, C/N ratio, soil acidity and	
		salinity	

		Classification and functions of carbohydrates, proteins	
V	Biochemistry	and lipids. Metabolism - Glycolysis, Citric acid cycle,	12
		Electron transport, Oxidative phosphorylation and	
		regulation of ATP production. Photosynthetic pathway.	

1.5 References

1.5a Text Books

- 1. De, A.K. (2007) Environmental Chemistry, Seventh Edition, New Age International Publishers.
- 2. Sharma, B.K and H. Kaur, (1994) Environmental Chemistry, Goel Publishing House Ltd., Meerut, UP.
- 3. Banerji SK, Environmental chemistry (2002). Prentice-Hall of India Private Limited, New Delhi.

1.5b Reference Books

- 1. Balram Pani, (2007) Text Book of Environmental Chemistry, I.K. International Publishing House PVT. Ltd.
- 2. Manahan, S.E. (2010), Environmental Chemistry, Ninth Edition, CRC Press.
- 3. Dara, S.S and D.D. Mishra (2009) A Text Book of Environmental Chemistry and Pollution Control, 10th edition, S. Chand & Company.
- 4. Bhatia SC, Environmental Chemistry (2002). CBS Publishers and Distributors. New Delhi.
- 5. Cunningham P, Cooper H, Eville G and Hepworth MT, Environmental Encyclopaedia (1999). Jaico Publishing House, Mumbai.
- 6. Don S, Essentials of Physical Chemistry (2011). CRC Press. ISBN: 9781439896938.
- 7. Johnson DO, Netteville JT, Wood JC and James M, Chemistry and the Environment (1973). W.B. Saunders Co., Philadelphia.

1.5c Web Sources

- 1. https://learn.careers360.com/chemistry/some-basic-concepts-in-chemistrychapter/
- 2. http://www.uigi.com/air.html
- 3. http://www.chem1.com/acad/pdf/c3redox.pdf
- 4. https://byjus.com/physics/air-composition-properties/
- 5. https://onlinelibrary.wiley.com/doi/full/10.1002/9781119300762.wsts0025
- 6. https://www.acs.org/content/acs/en/greenchemistry/what-is-greenchemistry.html

Elective-1: Biostatistics and Computer Applications

1.1 Course Objectives

• To teach the basic concepts of statistics and its role as an important tool in arriving at conclusions in biology and environment.

• To introduce the students, the basic methods of using computer and applying them in computing / analyzing the environmental data and solving the environmental issues.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Course outcomes	Unit
CO1	Easy understanding on basic computer and its functions	Ι
CO2	Get knowledge on statistics, data collection, data processing and tabulation, graphical representation of data	II
CO3	Acquire the knowledge on descriptive statistics and apply to the large data	III
CO4	Have an idea to apply the statistical tool like correlation and ANOVA	IV
CO5	To get clear knowledge in types of computer applications to use in biological data and testing hypothesis	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	L	-	-	L	L	Н	М
CO2	М	-	-	М	М	Н	Н
CO3	-	М	-	-	М	Н	Н
CO4	-		-	-		М	М
CO5	L	М	-	L	М	М	Н

1.4 Syllabus (Biostatistics and Computer Applications)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Introduction	History of Computer; character and organization	8
	to computer	- types and generation of computer. Hard ware	
		and Software: Types of memory; primary (RAM,	
		ROM, PROM, EPROM, EEPROM) and	
		secondary (Floppy, hard disc, eband DVD),	
		video terminal, OMR, OCR, Printers and	
		scanners Operating system	
II	Introduction	Scope, limitations of statistics, statistical method	10
	to Statistics	and experimental method. Collection of data,	
		sampling, classification and tabulation of data.	
		Diagrammatic & graphic presentation of data.	
		Information technology: Information Types,	
		needs, data processing. Computer application in	
		Environmental Studies.	
III	Descriptive	Introduction, measure of central location, mean,	10
	statistics	median, mode, measure of shapes. Properties of	
		mean, measure of spread, variance and standard	
		deviation, co-efficient of variation. Sampling	
		theories and Hypothesis testing, techniques and	
		experimental designs. Testing hypothesis:	
		Significance level and X^2 test, t and F test.	
IV	Correlation	Data sheet and data management. Analysis of	10
	and	variance: One way and two way ANOVA,	
	ANOVA	Regressions: Defining the fit, Correlation,	
		Calculation of correlation and regression.	
V	Computer	Tabulation of data. Graphical presentation of	10
	applications	data; line graph, bar chart, cumulative bar chart,	
	and	percentage bar, chart, pie chart and three	
	biostatistics	dimensional graphs. Frequency analysis;	
		Univariate and bivariate frequency tables.	

Calculation of mean, median and mode.
Calculation of modal frequency; grouping table
and analysis table. Testing and hypothesis;
application of 't' test.

1.5 REFERENCES

1.5a Text Books

- 1. Bryan FJ, Manly, (2008). Statistics for Environmental Science and Management, Second Edition, ISBN 9781420061475.
- 2. Ford ED, (2000). Scientific methods for Ecological Research. Cambridge University Press, Cambridge

1.5b Reference Books

- 3. John Schuenemeyer, Larry Drew, (2011). Statistics for Earth and Environmental Scientists.
- 4. Rosner B, (1986), Fundamentals of Biostatistics, Duxbury Press, Boston
- 5. Snedecor W and G Cochran, (1967). Statistical Methods. Oxford and IBH Publishing Co. Calcutta.

1.5c Web sources

- 1. https://peda.net/kenya/ass/subjects2/computer-studies/form-1/itc2
- 2. <u>https://www.learncomputerscienceonline.com/introduction-to-computer-system/</u>
- 3. http://oms.bdu.ac.in/ec/admin/contents/160_16SNMECA2-16SNMECS2-16SNMEIT1_2020052705350867.pdf
- 4. <u>https://www.britannica.com/science/statistics</u>
- 5. https://www.scribbr.com/category/statistics/
- 6. <u>https://www.analyticssteps.com/blogs/7-types-statistical-analysis-definition-explanation</u>
- 7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037948/
- 8. https://sccn.ucsd.edu/~arno/mypapers/statistics.pdf

SEMESTER – II

Core - 5: ENERGY RESOURCES AND ITS SUSTAINABILITY

1.1 Course Objectives

• To impart the basic knowledge of energy sources (both renewable and nonrenewable).

• To instruct the students the importance of conservation of energy and developing green energy technologies.

• To facilitate students to analyze and act locally and legally by developing their skills for critical investigation, bringing together multiple disciplinary perspectives, working with various stakeholders through deep change and become a driving force for sustainability.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

СО	Course outcomes	Unit
C01	Understand the basic knowledge of natural energy resources	Ι
CO2	Knowledge of non-renewable energy resources and its utilization	II
CO3	Clarity to renewable energy sources and its current scenario	III
CO4	Production of nuclear energy and bioenergy conversion methods	IV
CO5	Understanding of sustainable energy usages and green technologies for sustainable development	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	-	-	-	М	М	Н
CO2	М	-	-	-	Н	М	М
CO3	М	-	-	-	Н	М	М
CO4	М	-	-	-	Н	L	М
CO5	М	-	-	-	Н	Н	L

1.4 Syllabus (Energy Resources and Sustainability)

Unit	Unit Title	Learning Chapters	Hours of Instruction
Ι	Energy sources	Introduction to nexus between Energy, Environment and Sustainable Development; Energy transformation from source to services; Energy sources, sun as source of energy; classification of energy sources, quality and concentration of energy sources; fossil fuel reserves estimates, duration; theory of renewability, renewable resources; overview of global and India's energy scenario	10
II	Non-renewable Energy Sources	Global Energy crisis - Non-renewable energy sources: Fossil fuels – Composition, Classification, energy content of coal, crude oil and natural gas – Consumption and demands of coal, crude oil and natural gas – Environmental impacts of fossil fuel consumption	10
III	Renewable Energy Sources	Solar energy, geothermal energy, tidal energy, wind energy - Principals of generation of hydro-electric power - Ocean thermal energy conversion - Energy use pattern in different parts of the world - Management of renewable energy - Present scenario of renewable energy sources in India	12
IV	Nuclear energy and bioenergy	Nuclear energy - Introduction, nuclear energy sources, fission and fusion, nuclear fuels, Nuclear reactor – principles and types - Impacts of large-scale exploitation of nuclear energy sources. Bioenergy: Methods to produce energy from biomass. Biomass conversion technologies – Biogas generation-classification and types of biogas plants.	10
v	Green Innovation & Sustainability	Criteria for choosing appropriate green energy technologies, the emerging trends – process/ product innovation technology; Eco/green technologies for addressing the problems of Water, Energy, Health, Agriculture and Biodiversity (WEHAB) – design for sustainability. Future energy Systems - clean/ green energy technologies; International agreements/ conventions on energy and sustainability	12

1.5 References

1.5a. Text Books:

1. Rai GD, Non-conventional energy sources (2001). Khanna publishers, New Delhi.

2. Murray RL, Nuclear Energy–An Introduction to Concepts (2009). Systems and Applications of Nuclear Processes, 6th ed. Elsevier.

3. Sukhatme SP, Solar Energy (1996). Tata McGraw Hill publishing company Ltd., New Delhi.

1.5b. Reference books:

1. Maheswari A and Parmar G, A Text book of Energy, Ecology, Environment and Society, Anmol Publications, New Delhi, 2002.

2. Dunn PD, Appropriate Technology. Macmillan Education limited, 1979.

3. Johnson Gary L, Wind Energy System Prentice - Hall Inc., New Delhi, 1985.

4. Trivedi PR and Sudarshan KN, Environment and natural resources conservation, Common Wealth Publishers, New Delhi,1994.

1.5c. Web Links

1. https://mnre.gov.in/

2. https://www.ibef.org/industry/renewable-energy.aspx

3. https://www.iea.org/reports/india-energy-outlook-2021

4.<u>http://www.mospi.nic.in/sites/default/files/reports_and_publication/ES/Energy%20Sta_tistics%20India%202021.pdf</u>

Core - 6: ENVIRONMENTAL POLLUTION

1.1 Course Objectives

The purpose of this course is to gain awareness of environmental pollution and an overview of causes and consequences to natural, economic and social systems, to understand the fundamental principles governing the interactions between transports of pollutants in the environment.

1.2 Course Outcomes

CO	Course outcome	Unit
CO1	Learn about the various forms of air pollutants, sources and its	Ι
	effects	
CO2	Have clear understanding on the water pollution	II
CO3	Get knowledge on marine pollution and its impacts	III
CO4	Get exposed to knowledge on soil/ land pollution of the	III
	environment	
CO5	Understand problems of radioactive and noise pollution	IV
CO6	Understand the ill effects of pollution and Create awareness to	
	public on Environmental pollution and its control	

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	L	Н	L	М	Н	-	L
CO2	L	Н	-	М	Н	-	М
CO3	L	Н	-	М	Н	-	М
CO4	L	Н	-	М	Н	-	Μ
CO5	L	Н	-	М	Н	-	Μ
CO6	-	L	L	L	L	М	

1.4 Syllabus (Environmental pollution)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Air pollution	Types of air pollutants, primary and secondary – particulate and gaseous contaminants - their sources. Dispersion of air pollutants. Mixing height/depth, lapse rates, Gaussian plume model-Introduction. Gaseous pollution control measures. Automobile pollution in India; Particulate matter pollution – PM ₁₀ and PM _{2.5} . Impact of air pollution - vegetation, animals, human beings and materials, Acid rain formation its effects on environment, Greenhouse Effect-Global Warming Stratospheric ozone depletion. Air quality standards. Case study - Photochemical smog in London and Los Angeles; Bhopal gas disaster.	12
Π	Water Pollution	Sources of water pollution, Classification of water pollutants - Oxygen demanding wastes, pathogens, plant nutrients, synthetic organic compounds, inorganic chemicals and mineral substances. Groundwater pollution - Sources and sinks, Purification of water by adsorption, flocculation, ion exchange and reverse osmosis methods. Alternatives of end of pipe treatments, online monitoring of industrial effluents. Water quality standards. Case Study- Minnamata Disaster, Love Canal Disaster. Thermal pollution: Sources and effects.	12
III	Marine Pollution	Sources of marine pollution and control. Criteria employed for disposal of pollutants in marine system, Impact of marine pollution, Oil pollution - sources and effects, Control measures - coastal management. Episode - Torrey Canyon, British Petroleum - Gulf of Mexico oil spill.	10
IV	Soil Pollution	Properties of soil - Physico-chemical and biological (texture, structure, inorganic and organic components). Movement and sorption mechanisms of organic and inorganic contaminants and their impacts. Sediment Pollution – Black carbon. Industrial effluents and their interactions with soil components. Soil micro- organisms and their functions - degradation of pesticides and synthetic fertilizers.	10
V	Radioactive and Noise Pollution	Radiation - types and units-sources natural and man- made, Effect of radioactive pollution and nuclear explosions. Episode - Chernobyl and Fukusima	12

Daiichi Nuclear Disaster. Noise pollution: Sources,	
weighting networks, measurement of noise indices	
(Leq, L10, L90, L50, TNI). Noise dose and Noise level	
standards and impacts of noise pollution.	

1.5 References

1.5a Text Books

1. De, A.K. (2007) Environmental Chemistry, Seventh Edition, New Age International Publishers.

2. Kannan K, Fundamentals of Environmental Pollution (1991). S. Chand and Co., Delhi.

3. Rao MN and Rao HVN, Air Pollution (1989). Tata McGraw Hill Publishing Co. Ltd., New Delhi.

4. Sharma BK and Kaur H, Soil and Noise Pollution, Water Pollution (1994). Goel Publishing House, Meerut.

5. Malhotra R, Climatology (2010). Global Vision Publishing House, New Delhi.

1.5b Reference Books

1. Manahan, S.E. (2010), Environmental Chemistry, Ninth Edition, CRC Press.

2. Dara, S.S and D.D. Mishra (2009) A Text Book of Environmental Chemistry and

Pollution Control, 10th edition, S. Chand & Company.

3. Abbasi SA, Environmental pollution and its control (1998). Cogent international, Pondicherry.

4. Kudesia VP, Air pollution (1997). Pragati publications, Meerut.

5. Das AK, Environmental Chemistry with Green Chemistry (2010). Books and Allied (P) Ltd. Kolkata.

6. Bhatia HS, Environmental pollution and its control (1998). Galgotia Publications (P) Limited, Delhi.

1.5c Web Links

1. https://www.unep.org/beatpollution/global-response-pollution

2. https://www.unep.org/beatpollution/

3. https://in.one.un.org/blogs/five-indian-innovations-to-beat-air-pollution/

4. https://www.ccacoalition.org/sites/default/files/resources/2016_Breathing-

Cleaner-Air-Ten-Scalable-Solutions-for-Indian-Cities.pdf

5. https://www.weforum.org/agenda/2019/09/how-technology-can-help-indiabreathe-more-easily/

Core - 8: ENVIRONMENTAL IMPACT ASSESSMENT

1.1 Course Objectives

The purpose of this course is to introduce the methodology of environmental impact assessment (EIA) as a vital tool for sound environmental management and decisionmaking and to provide an overview of the concepts, methods, issues and various forms and stages of the EIA process.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

СО	Outcomes	Unit
CO1	Explain the major principles and components of EIA processes	Ι
CO2	List and comply with the environmental clearance procedures in India	II
CO3	Understand about the methods used for EIA studies	III
CO4	Discuss the implications of current jurisdictional and institutional	IV
	arrangements in relation to EIA	
CO5	Access different case studies/ examples of EIA in practice	IV
CO6	Summarize the EIA report with suitable environmental management	V
	plan	

1.3 Mappings scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	-	L	-	М	Н	-	М
CO2	М	М	-	L	М	L	Н
CO3	L	-	-	М	L	L	М
CO4	L	-	L	Н	М	-	Н
CO5	-	-	-	Н	М	L	М
CO6	L	L	М	М	Н	-	M

1.4 Syllabus (Environmental Impact Assessment)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Introduction to	History and perspectives. EIA - Definition and	12
	EIA	Terminologies. Types of EIA - Projects subject to	
		EIA. Regulatory framework in India, EIA guidelines,	
		Govt. of India EIA Notifications 1994. 2006 and	
		amendments up to 2020.	
II	EIA	Adhoc, Overlays, Matrix, Checklist and Network	12
	Methodologies	approach. Battle Columbus Technique and modeling.	
		EIA Process, EIS and EMP. Public Consultation, list	
		of industries attracting EIA, Environmental	
		Clearance. Composition of expert committee, Terms	
	D 11	of Reference, EIA Report Preparation.	0
	Public	Objectives of People's Participation - Advantages	8
	Participation,	and Disadvantages - People's Participation	
	Preparation and	Techniques: Public Hearing - Preparation and	
	Review of EIA	Review of EIA Report: EIA Reports Content - Basis	
	Report	and Criteria for Evaluation of EIA Reports and EIA	
IV	EIA case	Air, Noise, Water, Land, flora and fauna, Socio -	8
	studies	economic and biotic environment. Environmental	
		setting, Identification, evaluation and prediction of	
		environmental impacts. Case studies of EIA of	
		developmental projects – Hydel project, Oil Pipeline	
		project, East Coast Road, Mining project.	
V	Environmental	Guidelines, planning for Environmental Audit. Life	10
	Audit	cycle analysis, Cost Benefit Analysis. Industrial	
		safety and OHSA systems and ISO 27001. 45001 &	
		OHSAS 18001, Environmental	
		Management Systems. Cleaner production	
		technologies, Eco-mark and Eco labeling schemes.	

1.5 References

1.5a Text Books

1. Canter LW (1996) Environmental Impact Assessment. McGraw Hill, New York.

2. EIA Manual (2001) Ministry of Environment, Forest and Climate Change, New Delhi.

3.Munn RE, Environmental Impact Assessment (1982). McGraw Hill Book Co., New York.

1.5b Reference books

1. Anjaneyulu Y and Valli Manickam (2007) Environmental Impact Assessment Methodologies, 2nd Edition, B.S. Publications (ISBN: 978-81-7800-144-9).

2. Cutter L, Environment risks and hazards (1999). Prentice Hall of India Private Limited, New Delhi.

- Eccleston CH (2000) Environmental Impact Assessment A Comprehensive Guide to Project and Strategic Planning, John Wiley and Sons, NY.
- Peter Wathern (2015) Environmental Impact Assessment: Theory and Practice, Taylor & Francis, London
- 5. Singleton R, Castle, P and Sort, D (1999) Environmental Assessment, Thomas Telford Publishing, London.
- 6. Whitelaw K and Butterworth (1997) ISO 14001: Environmental System Handbook.

Elective paper - 2: Remote Sensing and Geographical Information System

1.1 Course Objectives

• To teach the basic knowledge about the remote sensing and geographical information systems.

• To introduce the principles and applications of remote sensing and GIS technologies in mapping and assessing the environmental resources / environmental pollution.

1.2 Course Outcomes

CO	Outcomes	Unit
	Building a foundation for understanding Remote Sensing	
CO1	and Geographic Information System as a powerful tool for	Ι
	geospatial analysis.	
	Build the foundation of understating of cartography, digital	
CO2	image, spatial and non-spatial data and geospatial	II
	terminology.	
	Learn about data and sources (RS based and other sources,	
CO3	field data collection) and integrate those into GIS	III
	environment for analysis.	
CO4	Appreciate the application of RS-GIS techniques to the	IV
04	matrices of environment and resource management.	1 V
C05	Obtain basic competence in assessing the environmental	V
005	pollution and natural disasters.	v

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	М	-	-	М	L	L	L
CO2	М	-	-	Н	М		М
CO3	М	-	-	Н	М		М
CO4	М	-	-	Н	Н		М
CO5	Н	L	L	Н	Н	М	L

1.4 Syllabus (Remote Sensing and Geographical Information System)

Unit	Unit Title	Learning Chapters	Hours of Instruction
Ι	Fundamentals of remote sensing	Background of remote sensing, Electromagnetic radiation, Interactions between matter and Electromagnetic radiation. Reflectance, Spectral reflectance and their characteristic sensor: Type of sensor, Characteristics of optical detectors, Types of scanners, Atmospheric sensors, Microwave sensors produces used in remote sensing. Applications of remote sensing for Environmental studies	10
II	Principles of Geographic Information System (GIS)	Concepts and Components of GIS – Hardware, software and organizational Context- Data, Maps, Projection, Data input, Data output, Data interaction and Analysis using raster and vector data.	10
III	Applications of Remote Sensing and GIS	Land use/land cover Mapping; Basic concept and classification and Land use change detection mapping – Mapping of soil erosion prone areas – Mapping of Forest degradation and Biodiversity conservation –Mapping of wetlands; Mapping of Site selection for waste disposal.	10
IV	Remote Sensing and GIS applications for pollution	Impact assessment of degradation and contamination of surface water and groundwater quality. Watershed Management-Eutrophication and its impacts–Coastal and marine pollution–Coastal dynamics. Mapping of Air pollutants due to Industrial activities.	8
v	Natural Disaster Assessment	Floods–Droughts–Landslides–Earthquakes–Volcanic eruptions–Desertification.	8

1.5 References

1.5a Text Books

- 1. Lillesand, T.M. And P.W.Kiefer, Remote Sensing and Image Interpretation, John Wiley & Sons, New York. Third Edition, 2007.
- 2. Chang KT, Introduction to Geographic Information System (2002). McGraw Hill, Boston.
- 3. Kang Tsung Chang, Introduction to Geographic Information System, MC Graw Hill, Boston. 2002.
- 4. Burrough P.A. and McDonnell R.A., Principles of Geographical Information Systems. 2nd Edition, Oxford University Press, 2006.

1.5b Reference book

1. Reddy MA. Text book of Remote Sensing and GIS (2003). BS Publications Hyderabad.

2. Panda BC. Remote Sensing Principles and Application (2005). Viva Books Private Limited, New Delhi.

3. Singh S, Geomorphology and Remote Sensing in Environmental Management (1992). Scientific Publishers, Jodhpur.

4. Pirazizy AA, Environmental Geography and Natural Hazards (1992). Concept Publishing Company, New Delhi.

5. Sabins FF, Remote Sensing Principles and Interpretation (1978). Freeman, San Francisco.

SEMESTER – III

Core - 9: ENVIRONMENTAL ENGINEERING

1.1 Course Objectives

The purpose of this course is to teach the students about the background of engineering principles, designs and methods to solve the environmental problems like wastewater treatment, sludge stabilization and biogas production, and to monitor environmental pollutants.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Outcomes	Unit
CO1	Understand the complex environmental issues use of various engineering	I
	strategies to apply to solve environmental issues	-
CO2	Understand the basic principles and methods of environmental	I
	engineering	-
CO3	Identify the suitable treatment methods for wastewater treatment and	П
	sludge stabilization	
CO4	Understand the process of biogas production from sludge.	III
CO5	Use their acquired knowledge to design the reactors for sewage and	IV
	sludge treatment.	
CO6	Monitor the environmental pollutants and control the treatment process	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes are tabulated as follows.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	L	Н	М	М	Н	М
CO2	L	L	Н	L	Н	М	М
CO3	L	-	Н	L	Н	М	М
CO4	L	-	Н	-	М	М	М
CO5	-	-	М	L	Н	М	Н
CO6	-	L	Н	-	Н	М	Н

1.4 Syllabus (Environmental Engineering)

Unit	Unit Title	Learning Chanters	Hours of
		Learning Chapters	Instruction
	An Overview of	Environmental sanitation, wastewater - wastewater	10
	Wastewater	quantity and quality - characteristics - treatment	
	Treatment and	required - preliminary, primary, secondary, and	
т	Disposal	tertiary treatments - sedimentation - effluent	
1		disposal - chlorination - sludge stabilization -	
		biosolids. Sewer system - design of sewers,	
		estimation of sewage flow, sewage collection, and	
		odour control.	
	Pre and Primary	Principle and design of screening, equalization tank,	8
	Wastewater	grit chambers, rectangular and circular coagulation	
II	Treatment Plant	and flocculation tank, sedimentation tank.	
		Chemically Enhanced Primary Treatment (CEPT) -	
		Design for a Small Community level.	
	Aerobic	Principles and design of aerobic biological	8
	Treatment of	treatment of sewage - Activated sludge process,	
Ш	Wastewater	Oxidation Ditch, Aerobic lagoons, Trickling filters,	
		Sequencing batch reactors, Fluidized-bed	
		bioreactors - Nutrient removal and pathogen	
		reduction.	
	Anaerobic	Design of facilities for anaerobic treatment of	10
	Treatment of	wastewater and sludge - Anaerobic digesters and	
IV	Wastewater and	septic tanks, Anaerobic filters, Upflow anaerobic	
	Sludge	sludge blanket reactor (UASB) - Sludge thickening	
		and digestion - Biogas production - Sludge	
		dewatering process, Biosolids - drying and disposal.	
	Air Pollution	Principle and design of minimum stack height -	8
v	and Control	Settling chamber - Cyclone collector - Fabric filter	
	Equipments	and Electrostatic Precipitators (ESP) -	
		Bioscrubbers.	

1.5 References

1.5a Text Books

1. P. Venugopala Rao. (2002). Textbook of Environmental Engineering PHI Learning Pvt. Ltd.

2. N. N. Basak. (2017). Environmental Engineering Tata McGraw Hill Publishing Company.

1.5b Reference Books

- Air Pollution Control Technology Manual (1998) Overseas Environmental Cooperation Center, Japan.
- Anne Maczulak (2010) Environmental Engineering: Designing a Sustainable Future, Infobase Publishing, NY, USA.
- Louis Theodore (2008) Air Pollution Control Equipment Calculations, John Wiley & Sons, NJ, USA.
- Mihelcic JR, Fry LM, Myre EA, Phillips L and Barkdoll BD (2009) Field Guide to Environmental Engineering for Development Workers - Water, Sanitation, and Indoor Air, American Society of Civil Engineers, USA.
- Pawlowski A, Dudzinska MR and Pawlowski L (2013) Environmental Engineering, CRC Press, Boca Raton, FL, USA.

1.5c Web References

- 1. http://www.suez-environnement.com/design-construction-water-plants/
- 2. https://www.dsd.gov.hk/EN/Sewerage/Sewerage_Strategy/index.html
- 3. http://www.eolss.net/sample-chapters/c09/e4-11-05.pdf
- 4. http://onsite.tennessee.edu/Aerobic%20Treatment%20&%20ATUs.pdf
- 5. http://www.thomasnet.com/products/air-pollution-control-equipment-780809-1.html
- 6. https://www.env.go.jp/earth/coop/coop/document/01-apctme/contents.html
- 7. https://engineeringonline.ucr.edu/blog/what-are-advanced-water-treatment-processes/
- 8. http://gcus.jp/wp/wp-

content/uploads/2014/06/ebd9e233be72625b03c96047573177f9.pdf

- 9. https://www.diva-portal.org/smash/get/diva2:808135/FULLTEXT02.pdf
- 10 https://www.host.nl/en/biogas-plants/sludge-treatment/

Core - 10: RESEARCH DESIGN AND INSTRUMENTAL METHODS

1.1 Course Objectives

The purpose of this course is to acquaint students about various types of research methods, instruments and their working principles, data process, report generation and to train the students to handle various research instruments.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Outcomes	Unit
CO1	Know the types of research and scientific databases, report writing.	Ι
CO2	Chose the research that they want to carryout.	II
CO3	Understand the manuscript preparation and publication process.	II
CO4	Understand the principles of research methods and instruments required for their research experiments.	III
CO5	Apply their knowledge on instrumentation for environmental analysis, and field works and data collection.	IV
CO6	To know the working principles of instruments and their applications.	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	L	L	Н	М	L	Η
CO2	М	L	-	Н	М	-	Н
CO3	М	L	-	Н	Н	М	Н
CO4	М	L	-	Н	-	-	М
CO5	М	L	L	L	М	L	М
CO6	М	L	L	М	М	М	М

1.4 Syllabus (Research Design and Instrumental Methods)

Unit	Unit Title	Learning Chapters	Hours of
Umt	Unit The	Learning Chapters	Instruction
Ι	Research Methods	Meaning and Objectives of Research; Significance of research; Research and scientific methods; Criteria of good and advanced research; Types of Research: (Survey, Observation, case study, experimental, historical and comparative methods) Stages in preparation; Research methods Vs methodology; Writing of Research Proposal, Report and Research paper Features of a good design; Different research designs; Sampling – Types of sampling design. Data collection – methods; Measurement and scaling – Quantitative and qualitative; Classification; goodness.	8
Π	Manuscript preparation and publications	Screening of material for inclusion within the structure of the manuscript - Importance of authors and their sequence - Importance of clear title, Abstract, Introduction, Methods, Results, Discussion and conclusion - Numbers and Statistics, Tables and Figures - Reference protocols ; Copyright Act (in brief), Plagiarism, Statistical methods and Citation index (h index and i-10 index) and SCI Impact factor for journals.	
III	Basic Analytical Equipments	Principle, Working mechanism and environmental applications of pH Meter, Conductivity meter, Nephlometer. Basic principles and applications of light and electron microscopes. Types, function and applications of centrifuges. Principle, types and environmental application of elctrophoretic techniques and radio immune assay techniques.	8
IV	Spectroscopy	Various ranges of electromagnetic radiation - Interaction of electromagnetic radiation with matter, Spectrophotometry - Principles and working mechanism, types and applications of colorimeter, UV - Visible spectrophotometer, fluorimeter, flame photometer, AAS, AES, ICP-MS, IR, NMR spectrophotometer and XRD spectrometer.	12
V	Chromato graphy & Mass Spectrometry	Principle and concept of chromatography - stationary phase, mobile phase, partition and adsorption, coefficients. Working principle, instrumentation and environmental applications of Thin layer and Ion exchange chromatography, HPLC, HPTLC, LC-MS, and GC-MS.	12

1.5 References

1.5a Text Books:

1. Rt Kumar, (2010.) Research Methodology: A Step-by-Step Guide for Beginners, SAGE Pub.

2. Gurumani, N. (2006).Research Methodology for Biological Science. MJP Publishers.

1.5b References Books

1. Christian GD (2001), Analytical Chemistry, 5th edition, John Wiley and Sons Inc., India

2. Khopkar SM (1993) Environmental Pollution analysis, Wiley Eastern Ltd.

3. Manahan SE (2007) Environmental Chemistry, 7th edition, Lewis Publications, Florida, USA.

4. Manly, Bryan FJ (2001) Statistics for Environmental Science and Management, Chapman and Hall / CRC Press, Boca Raton, FL, USA.

Skoog DA, Holler FJ and Nieman TA (1980) Principles of Instrumental Analysis –
5th edition, Thomson Asia Pvt., Singapore.

6. Vogel AI (1998) Quantitative Analysis, 6th edition, Prentice Hall Inc., Willard HH, Merrit LL and Dean JA (1976) Instrumental Methods of Analysis, 5th edition, Van Nostrand Reinhold.

1.5c Web References

- 1. https://www.bio.umass.edu/biology/forms/content/499e-research-methodology
- 2. www.computerhope.com/os.htm
- 3. http://www.fao.org/docrep/005/ac665e/ac665e05.htm#TopOfPage
- 4. http://www.rss.hku.hk/plagiarism/page2s.htm
- 5. https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/bes2.1258
- 6. www.fao.org/docrep/W7295E/w7295e08.htm

7. https://chemistrynotesblog.wordpress.com/seperation-techniques/introduction-to-separation-techniques-2/

8. https://www.epa.gov/sites/production/files/2015-05/documents/402-b-04-001b-14-final.pdf

9. <u>https://en.wikibooks.org/wiki/Proteomics/Protein_Identification-</u> Mass_Spectrometry/Types_Mass_Spectrometry

Core - 12: WASTE MANAGEMENT

1.1 Course Objectives

The purpose of this course is to understand the problems of different kinds of wastes and understand the proper collection, segregation and reduction methods for municipal waste, biomedical waste, hazardous waste, e-waste, industrial waste etc. To identify waste nature and proper disposal methods for each type of wastes and identify the energy producing wastes and recovery of the energy from the wastes using different techniques.

1.2 Course Outcomes

CO	Outcomes	Unit
CO1	Understand health and environmental issues related to solid waste	
	management; Select the appropriate method for solid waste collection,	Ι
	transportation, redistribution and disposal	
CO2	Become aware of Environment and health impacts of solid waste	п
	mismanagement	
CO3	Understand engineering, financial and technical options for waste	ш
	management and wealth from waste management techniques	111
CO4	Understand industrial specific wastes and their efficient management	III
CO5	Describe methods of disposal of hazardous solid waste	IV
CO6	Understand the energy recovery and industrial specific treatment	V
	techniques	v

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Н	М	L	L	М	-	L
CO2	Н	М	L	-	-	L	М
CO3	Н	М	М	-	М	L	Η
CO4	Н	М	М	-	М	М	Н
CO5	Н	М	Н	-	-	М	Η
CO6	Н	М	Н	-	М	М	Η

1.4 Syllabus (Waste Management)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Municipal	Wastes - Introduction, Definition, Sources and	12
	Solid Waste	Classification; Municipal Solid Wastes - Source,	
		Types, Per Capita Generation, Global Scenario	
		Wastes; Collection and Transportation Methods,	
		Waste Processing and Material Recovery (TMRF),	
		Effects of Municipal Solid Wastes on Environment.	
		Disposal Methods (Landfill, Composting, Burning,	
		Incineration, Pyrolysis, Anaerobic Digestion).	
II	Hazardous &	Hazardous waste - Introduction, Characteristics,	12
	Radioactive	Classification of Hazardous Waste (Industrial,	
	Waste	Hospital and Domestic) – Labeling and Handling of	
		Hazardous Solid Wastes (Segregation, Recovery of	
		Hazardous Waste Substances) - Hazardous Waste	
		Disposal Techniques. Radioactive Wastes -	
		Sources, Types, Effects, Control and Disposal	
		Methods.	
III	Biomedical,	Biomedical Wastes: Sources, Types of Biomedical	12
	Plastic & e-	Wastes, Impacts of Biomedical Wastes on	
	waste	Environment - Control Measures of Biomedical	
		Wastes. Plastic Wastes: Sources, Types, Facts &	
		Figures of Plastic Waste Scenarios in National &	
		International, Effects of Plastic Wastes on	
		Environment, Control Measures of Plastic Wastes.	
		E-wastes: Sources, Types of e-wastes - Impacts of	
		e-wastes on Environment - Control measures of e-	
		wastes.	
IV	Industrial	Paper and Pulp, Tanneries, Textiles, Thermal Power	12
	Waste	Plants, Mining and Ore Processing, Refineries, Iron	
		Casting, Cement and Asbestos. Waste Sludge	
		Dewatering and its Disposal.	

V	Energy	Vermicomposting, mushroom cultivation, fly ash 10)
	Recovery	bricks, biogas, and electricity; Bioelectro chemical	
		systems – Microbial electrolysis cell – Microbial	
		fuel cell - Production of methane, ethanol,	
		electricity.	

1.5 References

1.5a Text Books

- 1. Kinnaman, T.C and Takeuchi, K. (2014). Handbook on Waste Management, Edward Elgar Publishing, UK.
- 2. Ramesha Chandrappa and Jeff Brown, (2012). Solid Waste Management: Principles and Practice, Springer Science and Business Media Publishers.

1.5b Reference Books

- 1. Basarkar Shishir, (2009) Hospital Waste Management: A Guide for Self-Assessment and Review, JAYPEEDIGITAL
- 2. Hieronymi, C.K, R. Kahhat, and Williams, E. (2012) E-waste Management: From waste to resource. Routledge Taylor Francis Group Publishers.
- Bhide and Sundaresan (2000) Solid Waste Management in Developing Countries Indian National Scientific Documentation Center, New Delhi.
- 6. John Pitchel (2005) Waste Management Practices, Municipal, Hazardous, and Industrial. Taylor & Francis Group, LLC.
- Lagrega, M.D, Buckingham, P.L and Evans, J.V. (2001) Hazardous Waste Management, McGraw Hill Int. Ed. New York.
- 8. Lie, D.H.F and Liptak B.G (2000) Hazardous Wastes and Solid Wastes, Lewis publishers, New York.

Elective paper- 3: Disaster Management

1.1 Course Objectives

- To impart the basic knowledge on the natural and manmade hazards
- To enable students to understand the global disasters and initiatives taken for

management plans and awareness.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

СО	Outcomes	Unit
CO1	Understand the disaster and their types, impacts to the properties	Ι
CO2	Get the knowledge about the manmade problems to the nature and living things	II
CO3	Understand the reasons of forming natural and manmade hazards to the world.	III
CO4	Apply the knowledge to solve the problems of disaster at particular region. Aware the local people to protect them in secure shelter before disaster of the place.	IV
CO5	Students can aware of management plan and technologies are available for disaster management	V
CO6	Get strong knowledge about disaster and its control strategies by the proper plan	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	М	-	L	L	-	L
CO2	М	М	-	М	М	-	L
CO3	Н	М	-	L	М	-	
CO4	L	-	L	М	Н	L	М
CO5	М	-	М	М	М	L	М
CO6	-	L	М	М	Н	М	М

1.4 Syllabus (Disaster Management)

T	sit Unit Title Learning Chapters		Hours of
Unit	Unit litie	Learning Chapters	Instruction
Ι	Understanding Disasters	Disaster - Meaning, nature, characteristics and types of Disasters, Causes and effects. Disaster: A Global View, Disaster Profile of India, The Disaster Management cycle.	8
II	Natural hazards	Catastrophic geological hazards: Earthquakes, Tsunami's, volcanic eruptions, Snow avalanches, Landslides, Cyclones, Floods, Desertification, and Forest fires.	10
III	Manmade hazards	Improper irrigation and deforestation – Industrial hazards: Fire, Explosion, Toxic release and dispersion - Effects, Predictions, Forecasting and Mitigation measures of environmental hazards.	10
IV	Disaster management Plans	Components of disaster management plan - on- site and off-site emergency plans - Pre disaster phase, Actual disaster phase and Post disaster phase - Disaster assistance: Technological assistance, Relief camp Organization, Camp layout, Food requirement, Water needs, Sanitation, Security, Information administration, Fire fighting camping and Tent pitching, Rope, Knots and their use - Emergency rescue.	10
V	Awareness and education	Disaster education: Alternatives and new directions - Conceptualizing disaster recovery, Mitigation and preparedness, Programme planning and management.	8

1.5 References:

- 1. Harold D. Foster (1980) Disaster Planning. The Preservation of Life and Property, Springer-Verlag, New York.
- 2. Bryant Edwards (2005): Natural Hazards, Cambridge University Press, U.K.
- 3. Carter, W. Nick, 1991: Disaster Management, Asian Development Bank, Manila.
- 5. Central Water Commission, 1989, Manual of Flood Forecasting, New Delhi.
- 6. Government of India, 1997, Vulnerability Atlas of India, New Delhi.

7. Sahni, Pardeep et.al. (eds.) 2002, Disaster Mitigation Experiences and Reflections, Prentice Hall of India, New Delhi.

SEMESTER-IV

Core - 13: ENVIRONMENTAL LAW AND POLICIES

1.1 Course Objectives

The purpose of this course is to introduce the students to the vast field of Laws and Policies both at the national and international level relating to environment.

1.2 Course Outcomes

CO	Outcomes	Unit
CO1	Understand environmental legislation and policies of national and	Ι
	international regime.	
CO2	Have an insight into major acts and rules applicable for pollution	П
	control and natural resource conservation.	
CO3	To develop the skills needed for interpreting laws, policies and	Ш
	judicial decisions about the environment.	
CO4	Apply the legislation concepts for solving the local environmental	П
	problems	
CO5	Be in a position to prepare compliance reports for getting	IV
	environmental clearance	1,
CO6	Prepare the environmental management system for an organization.	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	L	-	L	L	-	Н
CO2	М	-	-	М	М	L	М
CO3	М	-	L	М	М	L	М
CO4	М	L	-	L	М	L	М
CO5	-	L	L	-	М	М	М
CO6	-	-	L	-	L	М	Н

1.4 Syllabus (Environmental Law and Policies)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Environmental	Indian Constitution – Structure – Provisions for	8
	Protection	environmental protection – Indian environmental	
		Law - Framework and Implementation - Role of	
		International Environmental Agencies -UNEP, GEF,	
		UNFCC and IPCC	
II	Environmental	Indian Wildlife (Protection) Act, 1972; Forest	10
	Laws in India	Conservation Act 1980; Indian Forests Act (Revised)	
		1982; Water (Prevention and Control of Pollution)	
		Act, 1975; Air (Prevention and Control of Pollution)	
		Act 1981, 1987 and Rule 1982; Environment	
		(Protection) Act, 1986 and Rules 1986; ; National	
		Environment Appellate Authority Act, 1997;	
		Biodiversity Act 2002; National Green Tribunal Act	
		2010	
III	Guidelines and	Bio-Medical Waste (Management & Handling)	10
	Rules in India	Rules, 1998; Recycled Plastics Manufacture and	
		Usage Rules, 1999; Noise Pollution (Regulation and	
		Control) Rules, 2000; Municipal Solid Waste	
		(Management and Handling Rules) 2000; The	
		Hazardous Wastes (Management, Handling and	
		Transboundary Movement) Rules,2008; Wetland	
		Rules 2009; Coastal Regulation Zones (CRZ) Rules	
		2011; E-waste Management and Handling Rules	
		2011; Plastics Manufacture, Sale and Usage Rules,	
		2011.	
IV	International	Stockholm Conference on Human	8
	Environmental	Environment,1972; Ramsar Convention on Wetlands,	
	Treaties and	197; Montreal Protocol, 1987; Basel Convention	
	Conventions	(1989,1992); Earth Summit at Rio de Zaneiro,1992;	
		Kyoto Protocol, 1997; Earth Summit at	

	Johannesburg, 2002; , Copenhagen Summit 2009 and 2019 Paris Agreement 2016 SDG - 2030	
	2017. 1 ans Agreement, 2010, 5DG - 2050	
Major	National Policies for Environmental Protection in	8
Initiatives/	India: National River Conservation Plan (NRCP),	
Policies from	National Ganga River Basin Authority (NGRBA),	
MoEF	Ganga Action Plan Phase I and II, Green India	
	Mission – Environmental Clearances: National	
	Environmental Assessment and Monitoring	
	Authority (NEAMA)	
	Major Initiatives/ Policies from MoEF	Johannesburg, 2002;Copenhagen Summit 2009 and 2019. Paris Agreement, 2016, SDG - 2030MajorNational Policies for Environmental Protection in India: National River Conservation Plan (NRCP), Policies fromPolicies fromNational Ganga River Basin Authority (NGRBA), Ganga Action Plan Phase I and II, Green India Mission – Environmental Clearances: National Environmental Assessment and Monitoring Authority (NEAMA)

1.5 References

1.5a Text Books

1. Environmental Law in India (2000) P. Leelakrishnan Butterworths India Publishers

2. Textbook on Environmental Law (2010) N. Maheshwara Swamy, Asia Law House Publishers

3. Gurudeep Singh (2005) Environmental Law in India, McMillan, New Delhi.

4. ShyamDiwan and Armin Rosencrany (2001) Environmental Law and Policy in India, Oxford University Press, New Delhi.

5. Singh G (1995) Environmental Law: International & National Perspectives.

6. Tamil Nadu Pollution Control Board (1999) Pollution Control Legislation Vol. I and II, Chennai.

Core - 14: ENVIRONMENTAL MANAGEMENT AND SUSTAINABLE DEVELOPMENT

1.1 Course Objectives

- To impart the basic knowledge on the concepts of environmental management.
- To enable students to understand the global issues and initiatives taken for sustainable development.

1.2 Course Outcomes

CO	Outcomes	Unit
CO1	Understand the important of natural resources and utilisation	Ι
CO2	Get knowledge to the management of available natural resources	II
CO3	Recognize the concepts of environmental sustainability.	III
CO4	Discuss the components of environmental sustainability from regional to global level.	III
CO5	Analyze environmental problems and develops skills to resolve for sustainable development.	IV
CO6	Report various trans-boundary environmental issues through reviewing and analyzing.	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	Н	Н	L	L	L	-	М
CO2	Н	Н	-	L	L	L	М
CO3	Н	Н	М	М	М	-	Н
CO4	Н	L	М	М	М	-	Н
C05	М	L	М	-	Н	L	Н
CO6	М	L	М	Н	Н	-	Н

1.4 Syllabus (Environmental Management and Sustainable Development)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Water	Water resource Management: Water resources and their	8
	management	significance; water balance, water utilization and related	
		problems, Rain water harvesting; restoration of water bodies;	
		Water sharing, water disputes; Wetland management;	
		watershed management.	
II	Land	Land Resources Management: land use pattern, land	10
	management	degradation - causes and control measures; wasteland	
		Management, land reclamation methods – physical, chemical	
		and biological, soil enrichment; Deforestation and its	
		impacts. Afforestation - social and agro forestry schemes.	
III	Sustainable	Concepts of Sustainable development; Components;	10
	development	Sustainable Development Goals (SDGs); integrated	
		approach to environment, practices of sustainable in India,	
		Global conventions; New National Environmental Policy	
		(2006); Agenda 21, Agenda 2030 for Sustainable	
		Development; Millennium Development Goals (MDGs)	
IV	Societal and	Societal Sustainability - Sustainable Governance indicators;	8
	Economic	Social Development Indicators (SDIs); Human Development	
	Sustainability	Index (HDI); Sustainable Society Index (SSI); Economic	
		sustainability- GDP per capita; Gini coefficient; ISO	
		14007:2019.	
V	Environment	Integrated Pests and Weed Management, Integrated	10
	al	Farming; Sustainable Forest Management (SFM); Ecological	
	Sustainability	Indicators and footprint; COVID 19: Challenges and	
		Importance of Environmental Sustainability; Environmental	
		Management System and Strategy; Environmental	
		Performance Index; Environmental Vulnerability Index.	

1.5 References

1.5a Text Books

- 1. Blewitt J, Understanding Sustainable Development (2008). Earthscan. ISBN: 9781844074556.
- 2. Brandon P, Lombardi P, Evaluating Sustainable Development (2005). Wiley Blackwell.
- 3. Rogers PP, Jalal KF and Boyd JA, An introduction to sustainable development (2007). Earthscan Publications Ltd.
- 4. Munn RE (1982). Environmental Impact Assessment. McGraw Hill book Co. NY.
- 5. Murty JVS (1994). Watershed Management in India. Wiley Eastern Ltd., New Delhi.

1.5b Reference Books

- 1. Canter LW, Environmental impact assessment, McGraw Hill Book co. NY, 1977.
- 2. Centre for Science and Environment, The State of India's Environment: The second

Citizen's Report, CSE, New Delhi, 2008.

3. Deborah Reyes, Sustainable Development: Process, Challenges and Prospects, 2015.

Nova Publisher. ISBN: 978-1-63482-506-1

4. Nandhithakrishna (1998). Environmental Laws of India – An Introduction. C.P.R. Environnemental Education Centre, Chennai.

1.5c Web Links

- 1. <u>http://css.umich.edu/factsheets/social-development-indicators-factsheet</u>
- 2. http://www.fao.org/forestry/sfm/en/
- 3. https://www.who.int/water_sanitation_health/resourcesquality/wpcchap6 .pdf
- 4. https://iwlearn.net/manuals/tda-sap-methodology/development-of-thetda/identificationprioritisation-of-the-transboundary/what-is-transboundaryproblem#:~:text =A%20 transboundary%20problem%20is%20an,affecting%20(or%20impacting)%20another.
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220565/

INTERNSHIP AND FIELD WORK

Objectives:

• To involve the students to work with the employees of a selected industry in understanding and learning the environmental challenges (waste water / air pollution / noise / solid wastes) and their control measures.

• To expose the students to selected ecosystems / natural environment to learn the ecological principles.

• To visit certain industries to understand the environmental pollution and control practiced in various industries.

Core - 15: PROJECT WORK

Objectives:

• To demonstrate the ability to carry out and write up an independent piece of work on a topic that is relevant to the course

• To demonstrate the ability to think critically and develop original ideas;

• To analyse data or literature and form conclusions based on this analysis

• To demonstrate independent research skills,

Supportive paper – 1: ECO-TOURISM AND WILDLIFE MANAGEMENT

1.1 Course Objectives

To know about the concept of ecotourism, development of ecotourism places. To know about the impacts and management issues of ecotourism.

1.2 Course Outcomes

On the successful completion of the course, students will be able to

CO	Course Outcomes	Unit
CO1	Know the principles, concept, types and benefits of	Ι
	ecotourism	
CO2	Know interesting places of ecotourism	II
CO3	Evaluate the impacts of ecotourism on the environment	III
CO4	Understand the need for wildlife conservation	IV
CO5	Acquire the knowledge on management of Ecotourism	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	L	-	-	L	L	L	М
CO2	М	-	-	L	L	М	М
CO3	М	М	L	L	Н	М	Н
CO4	М	-	М	М	Н	-	Н
CO5	М	-	-	М	Н	М	М

1.4 Syllabus (Eco-Tourism and Wildlife Management)

Unit	Unit Title	Learning Chapters	Hours of
			Instruction
Ι	Introduction	Principles of Ecotourism - Types of Ecotourism -	7
	to Eco-	Concepts of Ecotourism - Origin of Ecotourism -	
	Tourism	Objectives of Ecotourism - Benefits of Ecotourism -	
		Trends affecting Ecotourism. Concepts of Tourism -	
		Classification – Religious Tourism – Cultural Tourism	
		– Heritage Tourism – Monumental Tourism –	
		Adventure Tourism - Mass Tourism - Sustainable	
		Tourism – Consumptive and NonConsumptive	
		Tourism	
II	Interesting	Maintenance of Ecological Centers - Important	10
	Eco-tourism	Biosphere Reserves. Target group of Ecotourism -	
		Ecotourism and Conservation - Study of different	
		Ecosystem – Rain forest Ecotourism – Mountain	
		Ecotourism - Polar, Islands and Coasts Ecotourism -	
		Wilderness – Marine Ecosystem.	
III	Impact of	Impact of Ecotourism - Economic Impacts (Fiscal	10
	Eco-tourism	Impacts, Concept and Methods) – Types and Degree of	
		Impacts from Ecotourism activities - Socio-cultural	
		Impacts – Ecotourism related organization –	
		Ecotourism Research - Disasters and Ecotourism	
IV	Wildlife	Wildlife conservation - Protected Areas Network in	10
	Conservation	India - Goals of management, Strategies for planning.	
		Factors influencing wildlife management such as	
		habitats, population, behaviour, food habits, health,	
		etc Tools for data collection and analysis.	
V	Wildlife	Human land-use and wildlife management units -	7
	Management	Important projects for the conservation of wildlife in	
		India - Role of local communities in wildlife	
		management - Wild life conservation laws - The	
		Wildlife (Protection) Act, 1972 (2002 amendment).	

1.5References

1.5a Text Books

- 1. Dasman RF (1968) Environmental Conservation: John Wiley and Sons, New York.
- 2. Mukherjee N (2008) Ecotourism and sustainable Development. Cybetech Publications, New Delhi.

1.5b Reference Books

- 1. Prabhas Chandra (2003) Global Ecotourism, Kaniskha Publishers, New Delhi.
- 2. Sinha, P.C (2003) Encyclopedia of Ecotourism, Volume I, II and III, Anmol Publications Pvt. Ltd., New Delhi.
- 3. Weaver DB (2001) The Encyclopedia of Ecotourism, CABI Publishing, UK.

1.5c Web sources

- 1. www.incredibleindia.org/newsite/cms_page.asp?pageid=994
- 2. www.nativescience.org/html/eco-tourism.html
- 3. www.wcsindia.org/
- 4. envfor.nic.in/divisions/9-10.pdf
- 5. http://www.ceeraindia.org/documents/lib_tabofcon_160300.htm

Supportive - 2: ENVIROMENTAL HEALTH AND SAFETY MANAGEMENT

1.1 Course Objectives

- To understand the basic principles of environmental health and safety practices.
- To create awareness about public and occupational health and safety requirements associated with the environment.
- To understand the role of environmental health, protection, occupational health and safety, compliance and best practices.

1.2 Course Outcomes

СО	Outcomes	Unit
CO1	Concepts and scope, basic requirements for healthy environment, environmental quality, human exposure and health impact.	Ι
CO2	Industrial pollution and chemical safety in public exposure from industrial sources, hazards by industry major chemical contaminants at workplace.	II
CO3	Understand the environmental disease - Fluorosis and Allergies; epidemiological issues.	III
CO4	Equip student with basic knowledge on safety issue related with explosion, pollutant release in water and air, and to implement measure during outbreak of flu epidemic at work place.	IV
CO5	Understand of health problem due to industrial dust, heat, chemicals, noise, toxic gases and metals, health hazard in agriculture	V

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	Н	-	-	L	М	М
CO2	М	Н	-	-	М	Н	Н
CO3	М	Н	-	-	М	М	Н
CO4	L	М	L	М	М	М	М
CO5	L	М	L	М	М	L	Н

1.4 Syllabus	(Environmental	Health and	Safety	Management)
	(~~~~~	

Unit	Unit Title	Learning Chapters	Hours of
		(L1, L2,L3,L4,L5,L6)	Instruction
I	Environmental Health	Concept and scope; Global and regional perspectives; Basic requirements for healthy environment; Environmental quality, human exposure and health impact – impact of environmental factors on human health	6
II	Industrial Pollution and Safety management	Extent of industrial pollution, Public exposure from industrial sources, Hazards by industry, Major chemical contaminants at workplace, Industrial environmental accidents. Principles of functions and safety management.	10
III	Environmental Diseases	Asbestosis, Silicosis, Sycosis, Asthma, Fluorosis and Allergies; Epidemiological issues - Malaria and Kala –azar	8
IV	Occupational Safety and Health	Occupational hygiene/ safety and disease; Principles and methods of occupational health, Health problem due to industrial dust, heat, chemicals, noise, toxic gases and metals, Prevention and control of occupational diseases	8
V	Environmental Health Hazard and Risk Assessment	Hazard and risk, Biological, chemical, physical and psychological health hazard; Health risk assessment and management	6

1.5 References

1.5a Text Books

- 1. Shaw, J. Chadwick (1998) Principles of Environmental Toxicology, Taylor & Francis Ltd
- 2. AnnaleeYassi, Tord Kjellstr"om, Theo de Kok, Tee Guidotti (2001). Basic Environmental Health, Oxford University Press

1.5b Reference Books

- 1. Environmental Health- Monroe T. Morgan (2003).
- 2. Handbook of Environmental Health and Safety Koren, H. (2002).
- 3. Risk Assessment A Practical Guide, 1993. Institution of Occupational Safety and Health, UK.

1.5c Web References

- 1. www.ehs.ucsb.edu/
- 2. www.ifc.org/ehsguidelines
- $3.\ slintec.lk/wp-content/uploads/2011/08/HealthSafetyManual.pdf$

Supportive – 3: GLOBAL ENVIRONMENTAL ISSUES AND MANAGEMENT

1.1 Course Objectives

To focus on major global environmental issues including population explosion, biodiversity loss, pollution, energy use, climate change and best environmental technologies for a sustainable development. To know how they are managed in various settings around the world.

1.2 Course Outcome

CO	Outcomes	Unit
CO1	Clearly identify important global, national, and local issues relating to population, food, and the environment	Ι
CO2	Explain the causes and consequences of the global environmental	II
	issues	
CO3	Get more knowledge on loss of biological resources	III
CO4	Understand the global disaster and hazards and their impacts	IV
CO5	Preparing for plan of sustainable management to the current	v
	global issues	

1.3 Mapping scheme

The mapping of course outcomes with programme outcomes is tabulated as follows:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	М	Н	L	М	Н	-	L
CO2	М	Н	-	М	Н	-	М
CO3	L	М	-	L	М	L	М
CO4	L	М	-	Н	Н	-	Н
CO5	L	М	М	Н	Н	L	Н

1.4 Syllabus (Global Environmental Issues and Management)

Unit	Unit Title	Learning Chanters	Hours of
Umt		Learning Chapters	Instruction
Ι	Human Population and Environment	Basic demographic concepts: Growth, fertility, mortality and migration - Overview of population growth – Population distribution and Urbanization - Poverty, food security and environmental degradation – Development vs Environment.	6
II	Global Atmospheric Changes	Global Air Quality and CO ₂ concentration scenario - Role of air pollutants in climate change – Sources of greenhouse gases - Ozone depleting substances – Facts and figures of current global warming scenarios in the world - El Niño and La Niña – Global consequences of El Niño	8
ш	Overexploitation of Biological Resources	Overexploitation of natural resources: Ecological footprint – Earth Overshoot Day - Water resources: Status of groundwater quality in India – Desertification. Soil Resources: Global threats for soil quality - Loss of organic carbon. Biodiversity Resources: Biodiversity Hot spots in India – Bioprospecting – Factors influencing biodiversity loss.	8
IV	Global Disaster Episodes	Geological Disasters: Earthquake: Origin of Earthquake, its magnitude and intensity - Earthquake prone zones in India - Effects of earthquake. Volcanoes: Types of volcanic eruptions - Active volcanic belts in the world - Nature and magnitude of volcanic hazards. Hydrological hazards: Flash flood - Flood management strategies - Regions of flood prone zones in India – Flood forecasting and warning – Man -made disasters: Oil spills – Forest fire.	10
v	Sustainable Environmental Management	Utilization of renewable energy resources – Solar, Wind, Hydroelectric and Biomass energy resources – Sustainable agricultural practices (Biofertilizers and Biopesticides) – National Action Plan on Climate Change (Eight missions) – Recent initiatives related to climate change adaptation and mitigation in India - The Global 200: Priority Ecoregions for Global Conservation – UNDP Sustainable Development Goals 2030 Agenda.	10

1.5 References

1.5a Text Books

- 1. Frances Harris (2012) Global Environmental Issues, 2nd edition, John Wiley & Sons Ltd., UK.
- 2. Stavros G. Poulopoulos and Vassilis J. Inglezakis (2016) Environment and Development: Basic Principles, Human Activities, and Environmental Implications. Elsevier, Netherlands.

1.5b Reference Books

- 1. Donald Hyndman and David (2005) Hyndman Natural Hazards & Disasters, Cengage Learning, USA.
- 2. John V. Walther (2014) Earth's Natural Resources, Jones & Bartlett Learning, USA.
- 3. Prasad Modak (2018) Environmental Management towards Sustainability, CRC Press, FL, USA.
- 4. PrasenjitMondal and Ajay K. Dalai (2017) Sustainable Utilization of Natural Resources, CRC Press, FL, USA.
- 5. Rajeev Pratap Singh, Anita Singh, VaibhavSrivastava (2017) Environmental Issues Surrounding Human Overpopulation, IGI Global, USA.
- 6. Raveendranathan D (2018) Development lead to Pollution and Depletion of Natural Resources, Notion Press, Chennai.
- 7. Serge Morand, Claire Lajaunie, RojchaiSatrawaha (2017) Biodiversity Conservation in Southeast Asia: Challenges in a Changing Environment, Earthscan from Routledge, UK.
- 8. Thangavel P and Sridevi G (2015) Environmental Sustainability: Role of Green Technologies, Springer, India.

1.5c Web Resources

- 1. https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf
- 2. www.who.int/airpollution/
- 3. https://unfccc.int/
- 4. re.indiaenvironmentportal.org.in/files/part%20II%20groundwater%20CPCB.pdf
- 5. https://www.footprintnetwork.org/our-work/earth-overshoot-day
- 6. https://www.elsevier.com/ data/assets/pdf.../ElsevierDisasterScienceReport-PDF.pdf
- 7. siteresources.worldbank.org/INTDISMGMT/Resources/0821363328.pdf
- 8. https://link.springer.com/chapter/10.1007/978-981-10-1866-4_2
- 9. www.ipcc.ch/
- 10. https://climate.nasa.gov/